- 詳細
- 投稿者: Super User
- カテゴリ: プレスリリース
- 参照数: 14
極薄の形状可変ミラーを実現!
X線ビームの大きさが3400倍変化
2025年6月27日
名古屋大学
理化学研究所
大阪大学
【本研究のポイント】
・厚みがわずか0.5mmの圧電単結晶ウエハ注1)のみで形状可変ミラーを作製。
・X線ビームサイズを世界で初めて3400倍以上変化させることに成功。
・ビームサイズなどの光学パラメータを大きく変えることにより、多機能型X線分析の実現が期待される。
名古屋大学大学院工学研究科の井上 陽登 助教、松山 智至 教授(兼:大阪大学大学院工学研究科招へい教授)、理化学研究所放射光科学研究センターの矢橋 牧名 グループディレクター、香村 芳樹 チームリーダーらの研究グループは、薄い圧電単結晶ウエハ1枚のみで構成された形状可変ミラーの作製に成功しました。形状可変ミラーはさまざまな分野で活用されており、近年X線集光システムにおける光学パラメータ可変レンズ注2)として注目されています。しかし、これまでにもさまざまな形状可変ミラーが開発されてきましたが、変形量の大きさが十分ではありませんでした。その理由として、変形量を大きくするためにはミラーの厚みを可能な限り薄くする必要がありますが、従来のミラーは異種材料の接合が不可欠なため、構造的に限界がありました。そこで本研究グループは、圧電単結晶であるニオブ酸リチウム(LN)の分極反転特性注3)に着目しました。LNは約1000℃の高温で加熱されると、分極構造が一部変化します。この特性を利用すると接合することなくバイモルフ構造注4)を形成できるため、ミラーの厚みを極限まで薄くすることが可能となります。実際に、厚みが僅か0.5mmのミラーを開発し、その形状を制御することで、X線ビームサイズを3400倍変化させることに成功しました。本成果によりビームサイズなどの光学パラメータを大きく変えることで、X線分析の視野や分解能を変更できるだけでなく、分析手法を切り替えることができる多機能型X線分析が可能となります。また、本ミラーは更なる薄型化が可能であり、例えば0.01mmオーダーまで薄くできます。その場合の変形量は、本成果よりもさらに100倍程度大きくなると計算されるため、X線領域だけでなく、可視光など幅広い波長領域で活用できると期待されます。 |
図1 本研究の概要図
【研究背景と内容】
形状可変ミラーは反射面の形状を調整することで、ミラーに反射された光の局所的な向きを制御することができます。そのため、宇宙望遠鏡や網膜イメージング、高強度レーザーの補償光学システムなど、さまざまな用途で活用されており、近年X線領域でも注目されています。従来のX線用レンズは電子顕微鏡の電磁レンズのように光学パラメータを変えることができないため、実験条件がX線用レンズの設計値に制限されていましたが、形状可変ミラーを用いることでこの問題を解決することができます。しかし、従来の形状可変ミラーには、変形量を大きくできない課題がありました。従来型では、変形の駆動源である圧電素子(電圧を加えると変形する材料)と、光を反射するミラー基板の異種材料を接合する必要があるため、形状可変ミラー全体の厚みを薄くできません。変形量は、厚みが薄いほど大きくなるため、ミラーの構造的な限界がありました。
そこで研究チームは、ニオブ酸リチウム(LN)の分極反転特性に着目しました。LNは圧電単結晶であるため、変形の駆動源にできます。さらに、研究チームはこれまでの開発において、LNの表面を光の反射面として利用できるレベルまで超平滑化できることに気付き、LNのみで構成されたX線形状可変ミラー(LNミラー)を実現してきました(2024.5.8プレスリリース)。その一方で、LNミラーは均一な分極構造を有するため、このままでは数nm程度しか変形できず、光学パラメータを変更する目的において不十分です。変形量を大きくするためにはバイモルフ構造の形成が不可欠ですが、結局接合が必要になってしまいます。この課題を解決するために本研究では、 LNの分極反転特性を利用しました(図1)。 LNは約1000℃の高温で加熱されると、分極構造が一部変化します。この特性により、接合することなくバイモルフ構造を形成できるため、ミラーの厚みを極限的に薄くすることができます。実際にミラーを作製し変形量を評価したところ、マイクロメートルを超える大変形が可能であることを確認しました(図2(a))。変形精度もナノメートルオーダーとX線を集光するにあたって十分な精度であり、ビームサイズを3400倍変化させることに成功しました(図2(b),(c))。本研究は、SPring-8のBL29XUで実施されました。
図2 実験結果。(a)印加電圧値とミラー変形量の関係。(b)収束光モードにおけるX線ビームサイズの形状。(c)発散光モードにおけるX線ビームサイズの形状。
【成果の意義】
本成果によりビームサイズなどの光学パラメータを大きく変えることで、X線分析の視野や分解能を変更できるだけでなく、分析手法を切り替えることができる多機能型X線分析が可能となります。また、このミラーは耐熱性が非常に高いため、X線領域だけでなくハイパワーレーザーなど過酷な環境下でも動作できると考えられます。さらに、本ミラーはさらなる薄型化が可能であり、例えば0.01mmオーダーまで薄くすることができます。その場合の変形量は,本成果よりもさらに100倍程度大きくなると計算され、より大きな変形量を必要とする領域でも活用できるようになります。これらを通じて幅広い科学・産業の発展に貢献することが期待されます。
本研究は、2023年度から始まったJST 『創発的研究支援事業(フレキシブルかつ超高安定なX線顕微鏡の開発、JPMJFR222B)』の支援のもとで行われたものです。
【用語説明】
注1)圧電単結晶ウエハ:
物質の中には、力を加えると電圧が生じ、その反対に電圧を加えると変形するものがあり、圧電素子と呼ばれている。その中でも圧電単結晶は均質な材料であり、圧電セラミックスなど他の圧電素子と比べて安定性や線形性が高い利点がある。
注2)光学パラメータ可変レンズ:
光学パラメータとして、開口数、焦点距離、アクセプタンスや倍率などがある。通常、X線顕微鏡などで用いるレンズは形を変えることができないため、光学パラメータが固定されている。その一方で、形状可変ミラーをX線レンズとすることで、ミラーの変形によりパラメータを自在に変化させることができる。
注3)分極反転特性:
通常ニオブ酸リチウムは単結晶かつシングルドメインの圧電材料として利用され、材料全体で均一な分極構造を有している。その一方で、基板を加熱したり、特定の元素やイオンを注入したりすることで、材料内部の分極方向を部分的に反転させることができる。
注4)バイモルフ構造:
異なる圧電定数や、熱膨張係数を持つ2層の材料を貼り合わせた構造である。電圧印加や温度変化によって、層間のわずかな変形差により生じる応力を利用して、大きく変形させる。
本件に関するお問い合わせ先 |
本件に関するお問い合わせ先
【研究者連絡先】
名古屋大学大学院工学研究科
助教 井上 陽登(いのうえ たかと)
【報道連絡先】
名古屋大学総務部広報課
TEL:052-558-9735 FAX:052-788-6272
E-mail:nu_researcht.mail.nagoya-u.ac.jp
理化学研究所 広報部 報道担当
TEL:050-3495-0247
Email: ex-pressml.riken.jp
大阪大学 工学研究科 総務課 評価・広報係
TEL:06-6879-7231 FAX:06-6879-7210
Email: kou-soumu-hyoukakouhouoffice.osaka-u.ac.jp
(SPring-8 / SACLAに関すること)
公益財団法人高輝度光科学研究センター
利用推進部 普及情報課
TEL:0791-58-2785 FAX:0791-58-2786
E-mail:このメールアドレスはスパムボットから保護されています。閲覧するにはJavaScriptを有効にする必要があります。
- 詳細
- 投稿者: Super User
- カテゴリ: プレスリリース
- 参照数: 380
電気の力でココアバターの結晶をコントロール!
〜美味しくて健康的なチョコレート製造へ貢献〜
2025年6月13日
広島大学
高輝度光科学研究センター
【本研究成果のポイント】
・ココアバターがもつさまざまな結晶の構造(=結晶多形)を、電気の力(外部電場)によってコントロールし、口どけの良い結晶を生成することに成功しました。
・口どけの良さにつながるV型結晶の生成には、外部電場を加えるとともに、適切な周波数を加えることが重要です。
・口どけの良い(微細な結晶の)美味しいチョコレート製造への応用に期待されます。
広島大学大学院統合生命科学研究科 小泉 晴比古 准教授、上野 聡 教授、羽倉 義雄 教授、高輝度光科学研究センター 関口 博史 主幹研究員(チームリーダー)、青山 光輝 主幹技師の共同研究グループは、チョコレートの美味しさを左右する重要な要素であるココアバターの結晶多形(※1)について、外から電気を加える外部電場を適用することで、美味しい口どけをもたらすⅤ型という結晶への変化(多形転移)を促進できることを明らかにしました。 |
【背景】
チョコレートの美味しさ、特に「口どけの良さ」は、ココアバターに含まれる結晶の状態(結晶多形)によって決まります。ココアバターには Ⅰ型から Ⅵ型 まで6種類の結晶多形がありますが、最も望ましいとされるのが、人間の口の温度(33 ℃)に近い温度で融解するⅤ型です。美味しいチョコレートを作るためには、このⅤ型をいかに正確に生成・制御するかが非常に重要です。加えて、Ⅴ型の結晶サイズを細かくすることも、より良い舌触りや食感を実現するために不可欠です。
これまで、金属や酸化物といった無機物質やタンパク質といった有機物質の結晶化において、応力場(力の加え方)、磁場、電場、電磁場などの外からの影響(外場)を応用して制御する試みが行われてきました。中でも電場は、比較的弱い強度でも効果が得られるため、大型の装置を必要とせず結晶化を制御できるという利点があります。本研究は、この電場の利点に着目し、ココアバターの結晶多形制御、特にⅡ型からⅤ型への多形転移の促進を目指しました。
【研究成果の内容】
本研究では、ココアバターのⅡ型からⅤ型への多形転移に対する外部電場の効果を詳細に調べました。ココアバターに3000 V/cmの外部電場を1週間加え、多形転移頻度を調査しました。ココアバターの結晶多形の特定には、兵庫県にある大型放射光施設「SPring-8」のビームラインBL40XUを使用しました。非常に細くて強いX線を使ってココアバターの結晶の形や微細な構造を詳しく調べるための実験装置です。まず、光学顕微鏡像で示されている白い球状の晶出物が、ココアバターのⅤ型であることが、SPring-8のBL40XUを用いて、明らかとなりました。そして、このココアバターのⅤ型である白い球状の晶出物を観察すると、外部電場(3000 V/cm)を加えることで、Ⅱ型からⅤ型への多形転移頻度が促進することが確認されました。また今回のケースでは、ココアバターのⅤ型の誘電率がⅡ型の誘電率よりも小さいために電場によって多形転移頻度が促進したと熱力学的に解釈できます。実際にココアバターのⅡ型とⅤ型の誘電率を測定し、熱力学的な解析と整合することも示されました。
さらに、多形転移の促進効果は、加える電場の周波数に依存し、10 kHzの周波数では外部電場を加えなかった時と比べ、約2.85倍まで増加しました。しかし、周波数が1 MHz以上になると効果は著しく減少し、5 MHzでは効果がほぼ消失しました。ココアバターの誘電率の周波数依存性の測定において、1 MHzあたりで誘電率の減少(誘電緩和)(※3)が観察されました。このことから、1 MHz以上の周波数では、結晶界面で形成されていた電気二重層が不安定になったり、消失したりすると考えられます。
つまり、ココアバターの多形転移を効果的に制御するためには、単に電場をかけるだけでなく、電気二重層の形成と安定性を考慮し、適切な周波数で電場を加えることが重要であることが分かりました。この技術を用いることで、口どけの良いⅤ型の微細な結晶を効率的に生成することが可能になります 。
電場ありでは、Ⅴ型が増加し多形転移頻度が促進されている。
【今後の展開】
本研究で得られた、外部電場によるココアバターのⅡ型からⅤ型への多形転移の促進の知見は、きめ細かいⅤ型結晶の生成を制御し、より優れた口どけを持つチョコレート製造技術の発展に貢献することが期待されます。特に、電気二重層の安定性を考慮した周波数や電場条件の最適化が、更なる結晶多形制御の鍵となります。また、外部電場がココアバターの粘度を低下させ、低脂肪化にも貢献する可能性が報告されています。チョコレートの原料は、カカオマスや砂糖といった粉体を加えることで粘度が高くなり、製造時にパイプの詰まりなどの問題が生じやすくなります。通常はココアバターを追加して粘度を下げる(追油)ことで対応していますが、外部電場によって追油せずに粘度を低下させることができれば、ココアバターの使用量を削減でき、低脂肪チョコレートの製造が可能になります。このように本技術を応用して、美味しさと健康を両立させた新しいチョコレート製品の開発にも貢献できると考えています。
【用語解説】
※1. 結晶多形
同じ化学組成を持つ物質が、分子の配列が異なる結晶構造をとる現象。ココアバターでは、Ⅰ型からⅥ型の6つの結晶多形が存在し、Ⅰ型が最も熱力学的に不安定で、Ⅵ型が熱力学的に最安定となっている。
※2. 電気二重層
物質の表面にプラスの電気が溜まると、その近くにマイナスの電気が引き寄せられてできる薄い二重構造。これが表面の電気の状態を安定させ、外部からの電気の影響を調節する。本研究では、ココアバターの結晶界面に形成される電荷の分布を指す。
※3. 誘電緩和
電場をかけた際に物質内の電荷の再配置が遅れる現象。特定の周波数で誘電率が変化し、エネルギー吸収が起こる。
本件に関するお問い合わせ先 |
本件に関するお問い合わせ先
<研究に関すること>
広島大学 大学院統合生命科学研究科 准教授 小泉晴比古(こいずみ はるひこ)
公益財団法人高輝度光科学研究センター 放射光利用研究基盤センター
主幹研究員 関口博史(せきぐち ひろし)
<広報・報道に関すること>
広島大学 広報室
TEL:082-424-6762
E-mail:kohooffice.hiroshima-u.ac.jp
高輝度光科学研究センター(JASRI)利用推進部 普及情報課
TEL:0791-58-2785
E-mail:このメールアドレスはスパムボットから保護されています。閲覧するにはJavaScriptを有効にする必要があります。
(SPring-8 / SACLAに関すること)
公益財団法人高輝度光科学研究センター
利用推進部 普及情報課
TEL:0791-58-2785 FAX:0791-58-2786
E-mail:このメールアドレスはスパムボットから保護されています。閲覧するにはJavaScriptを有効にする必要があります。
- 詳細
- 投稿者: Super User
- カテゴリ: プレスリリース
- 参照数: 331
Tb-Coアモルファス薄膜の4つの磁気補償点の発見
-磁性体の応用に新しい視点-
2025年6月10日
群馬大学
量子科学技術研究開発機構
信州大学
高輝度光科学研究センター
本件のポイント
● Tb-Coアモルファス薄膜の円偏光X線磁気コンプトン散乱測定を行い磁気補償、角運動量補償、スピン磁気補償、軌道磁気補償の少なくとも4つの補償点があることを明らかにした。
●これまで磁気補償、角運動量補償については、垂直磁化、高速磁化反転との関連が注目され研究が進められてきた。今回新たに見出したスピン磁気補償、軌道磁気補償に着目した研究を進めることで、電界駆動・電流駆動磁化反転などに関連したスピントロニクスデバイス開発の進展が期待される。
●本研究は群馬大学、量子科学技術研究開発機構、信州大学、高輝度光科学研究センターとの共同研究であり、大型放射光施設SPring-8の高輝度・高エネルギーX線の利用によって可能になった。
群馬大学(学長:石崎泰樹)の櫻井浩教授・高橋学教授、量子科学技術研究開発機構(理事長:小安重夫。以下「QST」)の安居院あかね上席研究員、信州大学(学長:中村宗一郎)の劉小晰教授、高輝度光科学研究センター(理事長:雨宮慶幸)の辻成希主幹研究員らの研究グループは、磁気コンプトン散乱測定を利用し、磁気デバイス材料であるTb-Coアモルファス薄膜において、磁化がゼロとなる磁気補償、角運動量がゼロとなる角運動量補償、スピン磁化がゼロとなるスピン磁気補償、軌道磁化がゼロとなる軌道磁気補償の少なくとも4つの補償点があることを見出しました。これまで、磁気補償に着目した垂直磁気記録に関する研究、角運動量補償に着目した高速磁化反転に関する研究が進められてきました。新たに見出した軌道角運動量補償あるいはスピン角運動量補償に着目した研究が進めば、電界で軌道磁気モーメントを制御する電界駆動の磁気メモリーや電流のスピントルクで磁壁駆動できるレーストラックメモリーなどの開発に資する可能性があります。本研究で見出した4つの補償点の関係は、各補償点に関連した材料の機能を活用したスピントロニクスデバイスの設計に指針を与えると期待されます。なお、大型放射光施設SPring-8の高輝度・高エネルギー・円偏光X線を用いることで、初めてこの測定が可能になりました。
図 TbxCo100-xアモルファス薄膜の4つの磁気補償点の組成比依存性。
磁化がゼロとなる磁気補償組成Xcon、 角運動量がゼロとなる角運動量補償組成XJ、スピン磁気モーメントの総和がゼロとなるスピン磁気補償組成Xspin、 軌道磁気モーメントの総和がゼロとなる角運動量補償組成Xorbitalの温度変化。Xorbital (T) < XJ (T) < Xcon (T) < Xspin (T)であることがわかる。
|
研究の背景
一般に磁性体はマクロな磁化測定(注1)で評価されていますが、我々はミクロスコピックな磁性の起源となる構成元素、スピン磁気モーメント、軌道磁気モーメントに着目しTb-Coアモルファス薄膜の磁気補償について研究を進めてきました。Tb-Coアモルファス薄膜は、スペリ磁性(注2)とよばれる特殊な磁気構造を有しており、Co原子とTb原子の磁気モーメントは互いに逆を向いているため、特定の組成で薄膜の磁化がゼロとなります。この現象は磁気補償と呼ばれ、その組成近傍では高密度磁気記録に有効な垂直磁化が観測されます。スピン磁気モーメントは電子のスピン角運動量に起因し、軌道磁気モーメントは電子の軌道角運動量に起因します。スピン角運動量と軌道角運動量の総和がゼロとなる角運動量補償組成では、磁気記録時間を短縮できることが知られています。これら良く知られた磁気補償と角運動量補償に加え、スピン磁気モーメントの総和がゼロとなるスピン磁気補償組成や、軌道磁気モーメントの総和がゼロとなる軌道磁気補償組成で、電流のスピントルクによる磁壁駆動や電界による軌道磁気モーメント制御との関連を見出せる可能性があります。また、4つの磁気補償点の関係を把握することにより、垂直磁化、高速磁化反転、電流駆動・電界駆動磁化反転など各補償点に関連した材料の機能を活用したスピントロニクスデバイス(注3)の設計に指針を得ることができます。しかしながら、スピン磁気補償と軌道磁気補償の実験的報告はなく、磁気補償、角運動量補償、スピン磁気補償、軌道磁気補償の関係については明らかではありませんでした。
研究成果
今回の研究では、組成xを変えた7種類のTbxCo100-xアモルファス合金薄膜(12<x<23)を信州大学で作製しました。群馬大学のSQUID磁力計で磁化測定を行い、高輝度光科学研究センターの協力のもとQST、群馬大が大型放射光施設SPring-8(注4)のBL08Wで磁気コンプトン散乱測定(注5)を行いました。各組成の試料について、10K
特に本研究で新たに指摘したスピン角運動量補償点あるいは軌道角運動に関する知見は、電流のスピントルクで磁壁駆動できるレーストラックメモリー(注6)や電界で軌道磁気モーメントを制御する電界駆動の磁気メモリーの開発に資すると考えられます。本研究で示された4つの補償点補償点を独立に制御したり、組み合わせて制御したりすることで、材料の機能をより活用したスピントロニクスデバイスの設計指針が得られると期待されます。なお、大型放射光施設SPring-8の高輝度・高エネルギー・円偏光X線を用いることで、初めてこの測定が可能になりました。
今後の展開
本研究で示された4つの補償点に関する知見は、電流駆動磁壁移動時に僅かな電流で磁壁駆動ができる超低消費電力のレーストラックメモリー、電界で軌道磁気モーメントを制御する電界駆動磁気抵抗メモリー(MRAM)、スピン流の検出(スピンホール効果)を用いたTHzのセンサーの開発など、スピントロニクスデバイス開発のブレークスルーにつながると期待されます。さらに、3GeV高輝度放射光施設NanoTerasu(注7)で開発される高性能の軟X線磁気円二色性吸収測定装置を活用することで、広汎な新磁性材料の局所磁気補償の解明が大きく進展すると期待されます。
付記
本研究は日本学術振興会(JSPS) 科研費 基盤研究(C) 15K04658, 19K04464、基盤研究(B) 22H02103、国際共同研究強化(B) 21KK0095からの支援を受けて行われました。
【用語解説】
※1. マクロな磁化測定
外部磁場によって試料全体に誘導された磁気成分を計測する。代表的な測定に振動試料型磁力計(VSM磁力計)やSQUID磁力計を用いる方法がある。
※2. スペリ磁性
希土類-遷移金属合金がアモルファス構造をとるとき、希土類元素の4f電子の磁気モーメントと3d遷移金属元素の3d電子の磁気モーメントの向きは、それぞれが一方向にそろうのではなく分布を持つことが多い。4f電子の磁気モーメントと3d電子の磁気モーメントが互いに逆向きの分布を持つ場合をスペリ磁性とよぶ。
※3. スピントロニクスデバイス
従来のエレクトロニクスデバイスでは、半導体におけるpn接合を利用しており、電子の電荷を電場で制御することによりデバイスの動作を制御している。スピントロニクスデバイスでは、電子のスピンを磁場または電流で制御することにより、デバイスの動作を制御する。微細化や低消費電力化に有効である。
※4. 大型放射光施設SPring-8
兵庫県の播磨科学公園都市にある、世界最高性能の放射光を生み出す理化学研究所の施設で、利用者支援等は高輝度光科学研究センター(JASRI)が行っている。SPring-8(スプリングエイト)の名前はSuper Photon ring-8 GeV(ギガ電子ボルト)に由来する。放射光とは、電子を光とほぼ等しい速度まで加速し、磁場によって進行方向を曲げた時に発生する、細く強力な電磁波のこと。SPring-8では、この放射光を用いて、ナノテクノロジーやバイオテクノロジー、産業利用まで幅広い研究が行われている。
※5. 磁気コンプトン散乱測定
入射X線が物質中の電子で散乱されたとき、散乱X線のエネルギーが入射X線のそれより低くなる現象をコンプトン散乱とよぶ。物質中の電子のスピン状態に依存したコンプトン散乱を磁気コンプトン散乱とよぶ。この現象を利用して磁化のスピン成分を測定することができる。
※6. レーストラックメモリー
磁区の磁化の向きで0と1の情報が書き込まれた磁気ナノワイヤに、電流パルス(矩形波)を与えることによって情報のある磁区を駆動し(磁壁を駆動し)、読み取り素子である磁気トンネル接合素子(MTJ素子)で構成する磁性層で読みだす。不揮発性であり、機械的な駆動部分がないため省電力で高速の読み出しが可能とされる。
※7. 3GeV高輝度放射光施設NanoTerasu(ナノテラス)
国の主体機関である量子科学技術研究開発機構と地域パートナー(宮城県、仙台市、東北大学、東北経済連合会で構成)の代表機関である光科学イノベーションセンターによる官民地域パートナーシップという新しい枠組みによって整備・運営する特定先端大型研究施設で、東北大学青葉山新キャンパス内に立地している。利用者支援等は高輝度光科学研究センター(JASRI)が行っている。最新の円型加速器設計を国内で初めて採用した第4世代放射光施設で、従来の100倍の高輝度化と高コヒーレント化を実現することで、物質構造の解析に加え、機能に影響を与える「電子状態」、「ダイナミクス」等の詳細な解析が可能。
本件に関するお問い合わせ先 |
本件に関するお問い合わせ先
〈研究に関すること〉
群馬大学 大学院理工学府電子情報部門
教授 櫻井浩
教授 高橋学
量子科学技術研究開発機構
上席研究員 安居院あかね
信州大学 大学院工学研究科 教授 劉小晰
高輝度光科学研究センター(JASRI) 放射光利用研究基盤センター
回折・散乱推進室 主幹研究員 辻成希
〈報道に関すること〉
群馬大学 桐生地区事務部事務課庶務係(広報担当)
TEL:0277-30-1895(直通) FAX:0277-30-1020
E-mail:rikou-prml.gunma-u.ac.jp
量子科学技術研究開発機構
国際・広報部国際・広報課
TEL:043-206-3026(直通) FAX:043-206-4062
E-mail:infoqst.go.jp
信州大学 総務部総務課広報室
TEL:0263-37-3056(直通) FAX:0263-37-2188
E-mail:shinhpshinshu-u.ac.jp
<SPring-8/SACLAに関すること>
高輝度光科学研究センター
利用推進部 普及情報課
TEL:0791-58-2785 FAX:0791-58-2786
E-mail:このメールアドレスはスパムボットから保護されています。閲覧するにはJavaScriptを有効にする必要があります。
(SPring-8 / SACLAに関すること)
公益財団法人高輝度光科学研究センター
利用推進部 普及情報課
TEL:0791-58-2785 FAX:0791-58-2786
E-mail:このメールアドレスはスパムボットから保護されています。閲覧するにはJavaScriptを有効にする必要があります。
- 詳細
- 投稿者: Super User
- カテゴリ: プレスリリース
- 参照数: 334
未来の材料開発に向けた新しい大環状分子を合成
未踏だったパーヒドロキシアサー[6]アレーンとその酸化体を世界で初めて合成し、機能を解明
2025年6月10日
公立大学法人 名古屋市立大学
【研究のポイント】
・新環状分子「パーヒドロキシアサー[6]アレーン」とその酸化体を世界で初めて合成
・両分子は、将来的な機能化に有利な多数の遊離水酸基を有する
・従来のピラーアレーンでは到達できなかった新しい機能性分子設計や材料開発への展開が可能に
名古屋市立大学の田畑 愛美 大学院生、青栁 忍 教授、雨夜 徹 教授らの研究グループは、新しい環状分子「パーヒドロキシアサー[6]アレーン」およびその酸化体「パーヒドロキシアサー[6]キノン」の合成に世界で初めて成功しました(図1)。これらの分子は、材料科学など幅広い分野で注目されている環状分子「ピラーアレーン」と構造的に類似する新たな派生体にあたります。母骨格であるアサーアレーンは、ピラーアレーンよりも多くの官能基を有し、高機能材料の創出に有望な構造を備えています。しかし、2013年の初報告以来、水酸基が遊離した「パーヒドロキシ化体」は、これまで合成例が報告されておらず、未踏の分子でした。本研究により、その合成と単離が初めて達成され、さらに酸化により対応するキノン誘導体への変換も実現しました。これにより、従来アクセスが困難であった新たな分子を利用した機能性分子の設計や材料開発の可能性が大きく広がります。 |
【背景】
ピラー[n]アレーン(図1A)(注1)に代表される環状分子は、分子内に空間を持つ「ホスト分子」として、超分子化学や材料科学、さらには医薬品のドラッグデリバリーなど、さまざまな分野で応用が進んでいます。中でも、全ての芳香環がメトキシ基で置換されたアサー[n]アレーン(図1B)(注2)は、官能基導入の自由度が高く、より高機能な分子設計が可能な骨格として期待されています。しかし、その水酸基を遊離させた「パーヒドロキシアサー[n]アレーン」(図1C)(注3)は、これまで合成例がなく、応用展開の障壁となっていました。
【研究の成果】
パーヒドロキシアサー[6]アレーンの化学合成がこれまで達成されてこなかった背景には、この化合物自体が非常に不安定であることが、本研究によって明らかになったという事実があります。特に、空気中の酸素に対して極めて敏感で、容易に酸化されてしまう性質が、合成および単離の大きな障壁となっていたと考えられます。本研究チームはこの課題に対し、窒素雰囲気下で水を加えて目的化合物を沈殿させ、窒素を吹き付けながら速やかにろ過するという操作により、パーヒドロキシアサー[6]アレーンの単離に成功しました。さらに、この化合物を空気中に曝露することで自発的に酸化が進行し、酸化体であるパーヒドロキシアサー[6]キノン(注4)が得られることも明らかにしました(図1C)。
得られたパーヒドロキシアサー[6]キノンは、水酸化カリウム水溶液中で溶解性を示し、明確な二電子還元波を示すなど、酸化還元活性を持つことが確認されました。また、大型放射光施設SPring-8のBL41XUを用いたX線結晶構造解析により、分子内に溶媒分子を包接した構造が明らかになり、分子が平面状に積層する様子も観察されました。さらに、2価のジアンモニウムカチオンをゲスト分子とするホスト–ゲスト包接挙動を水溶液中で示し、特にこの包接はエントロピー駆動の相互作用であることが明らかになりました。
【研究の意義と今後の展開や社会的意義など】
本研究で合成されたパーヒドロキシアサー[6]アレーンおよびそのキノン型誘導体は、これまでのピラーアレーンでは実現できない分子設計や高機能材料の開発に向けた強力な足がかりとなります。多数の水酸基をもつことから、金属イオンとの錯形成、さらなる化学修飾、電子伝達材料としての展開などが期待されます。今後は、分子センサー、電池材料、ナノ材料、分子触媒など、環境・エネルギー・医療分野への応用が見込まれ、持続可能な社会の構築にも貢献する可能性を秘めています。
【研究助成】
科学研究費補助金「挑戦的研究(萌芽)」(課題番号:JP24K21772、研究代表者:雨夜徹)
【用語解説】
(注1)ピラーアレーンまたはピラー[n]アレーン
2008年に生越友樹氏および中本義章氏らによって初めて合成された環状分子。ベンゼン環がメチレン基(–CH₂–)でつながってできた柱状構造を持ち、その構造が柱(pillar)を想起させることから「ピラーアレーン」と名付けられた。[n]は繰り返し単位の数を表す。環内に空孔を有し、他の分子を包み込むホスト分子として機能する。合成および誘導化が容易であり、分子認識や超分子材料、分子機械など多様な分野で応用が進んでいる。
(注2)アサーアレーンまたはアサー[n]アレーン
2013年にJames Fraser Stoddart氏らによって合成されたピラーアレーンに類似した構造を持つ環状分子。アサロールメチルエーテル(asarol methyl ether)から合成されたことに由来し、「アサーアレーン」と名付けられた。[n]は繰り返し単位の数を表す。ピラーアレーンのベンゼン環上の水素原子がすべてメトキシ基(–OCH₃)に置換されている点が特徴であり、より高い官能基化の可能性を持つ骨格である。
(注3)パーヒドロキシ
「完全にヒドロキシ化された」という意味。ヒドロキシ基(-OH)は水酸基ともよばれる。
(注4)キノン
ベンゼン環に似た炭素の6員環構造において、二重結合(C=C)2つとカルボニル基(C=O)2つが共存する構造をもつ有機化合物。電子を受け取る性質をもち、酸化還元反応に関与しやすい。生体内ではビタミンKや補酵素Q(ユビキノン)などの構造にも見られ、生命活動において重要な役割を果たす。
本件に関するお問い合わせ先 |
本件に関するお問い合わせ先
【研究に関する問い合わせ】
名古屋市立大学 大学院理学研究科 教授 雨夜 徹
【報道に関する問い合わせ】
名古屋市立大学 経営企画部広報室広報係
名古屋市瑞穂区瑞穂町字川澄1
TEL:052-853-8328 FAX:052-853-0551
E-mail:ncu_publicsec.nagoya-cu.ac.jp
連携できる企業様でご関心をお持ちいただける場合は、下記の問い合わせ先までご連絡ください。
【共同研究に関する企業様からの問い合わせ】
名古屋市立大学 産学官共創イノベーションセンター
名古屋市瑞穂区瑞穂町字川澄1
TEL:052-853-8041 FAX:052-841-0261
E-mail:ncu-innovationsec.nagoya-cu.ac.jp
(SPring-8 / SACLAに関すること)
公益財団法人高輝度光科学研究センター
利用推進部 普及情報課
TEL:0791-58-2785 FAX:0791-58-2786
E-mail:このメールアドレスはスパムボットから保護されています。閲覧するにはJavaScriptを有効にする必要があります。
- 詳細
- 投稿者: Super User
- カテゴリ: プレスリリース
- 参照数: 687
クリプトクロム光受容タンパク質による光応答シグナル伝達の中間体構造を解明
2025年5月17日
大阪大学
東北大学
高輝度光科学研究センター
【研究成果のポイント】
◆青色光受容タンパク質であるクリプトクロムが光を検知した後の中間体構造を経時的に解析することで、クリプトクロムの光応答機構の詳細を解明
◆クリプトクロムに内包されるフラビン補酵素(FAD)の光還元反応に伴い、FAD近傍とFAD遠位にて独立に構造変化が起こることで、シグナル伝達を担う分子構造へと遷移することを発見
◆クリプトクロムの構造-機能相関の理解が深まり、今後の人工光遺伝学ツール開発の発展に貢献
台湾大学のManuel Maestre-Reyna助理教授、ドイツ・フィリップ大マールブルグのLars-Oliver Essen教授、大阪大学大学院基礎工学研究科の山元淳平准教授、台湾中央研究院・生物化學研究所の蔡明道特聘研究員らは、理化学研究所の別所義隆客員研究員、公益財団法人高輝度光科学研究センターの大和田成起主幹研究員、東北大学の南後恵理子教授、京都大学の岩田想教授、兵庫県立大学の當舎武彦教授、名古屋大学の梅名泰史准教授、およびグルノーブル・アルプ大学、欧州シンクロトロン放射光研究所の研究者らとの国際共同研究にて、緑藻類をはじめとした植物やハエの内に存在する青色光受容タンパク質であるクリプトクロムの、光受容後10ナノ秒から233ミリ秒にわたる中間体の立体構造を解明しました(図1)。
図1 青色光受容クリプトクロムの光応答反応の概要
【山元准教授のコメント】
|
研究の背景
ギリシャ語で「隠れた色素」を意味するクリプトクロムは、植物の生育やシグナル伝達・概日リズム形成などに関与する多機能タンパク質です。その内、青色光に応答して機能するものはフラビンアデニンジヌクレオチド(FAD)をタンパク質内部に有しています。タンパク質中のFADが光によって励起されると、FAD近傍に存在する芳香族アミノ酸側鎖から電子を獲得し、一電子還元状態のアニオン型FADラジカル(FAD•–)と一電子酸化状態のアミノ酸側鎖ラジカルを1ナノ秒以内に生成します。
この光還元反応によって生成するラジカル対はクリプトクロムの光応答機能に関与することが知られていましたが、光還元反応がどのように機能発現につながるのかは不明でした。
研究の内容
今回、研究グループは、青色光受容クリプトクロムの一つであるクラミドモナス由来動物型クリプトクロム(CraCRY)の微結晶をターゲットとし、まずは異なるFAD酸化状態を有するCraCRYの三次元構造をSACLAにて明らかにしました。酸化状態(FADox)および二電子還元状態FAD(FADH–)を有するCraCRYでは全体構造は概ね一致しました。一方で、一電子還元状態中性FADラジカル(FADH•)を有するCraCRYはC末端領域において電子密度の喪失が認められ、この部分の構造を決定することができませんでした。このことから、FADoxからFADH•への変化に伴うタンパク質構造変化が光応答機能発現の鍵となることを見出しました。
続いて、FADoxを有するCraCRY微結晶を用いて、光励起後10ナノ秒から233ミリ秒における反応中間体の三次元構造をTR-SFXによって解明しました。その結果、(i) FAD近傍、(ii) FADに隣接する溶媒露出部位、および(iii) C末端領域の3箇所が、異なる時間領域で構造変化することがわかりました(図2)。まず、FAD•–の形成に応じてFAD近傍が構造変化し、その後マイクロ秒以降に溶媒露出部位において逐次的に構造変化が起こることで、FAD•–のプロトン化産物であるFADH•の形成を時空間的に制御することを見出しました。また、FAD光還元反応によって生じる一電子酸化状態のアミノ酸側鎖ラジカルの近傍にはC末端領域が存在し、ラジカルの形成によってC末端領域とタンパク質本体をつなぐ塩橋が崩壊することで、C末端領域の構造変化が独立して誘起されることを明らかにしました。これらのデータから、クリプトクロムが光に応答して下流因子へとシグナル伝達を担う構造へと遷移する分子機構を解明しました。
図2 光受容後の構造変化の概要
本研究成果が社会に与える影響(本研究成果の意義)
本研究では、青色光受容クリプトクロムが光を検知した後の構造を経時的に解析することで、クリプトクロムの光応答機構の詳細な描像を与えることができたことから、基礎科学の理解に大きく貢献します。
また、クリプトクロムはオプトジェネティクス(光遺伝学)のツールの一つとなりうることが示唆されており、今回の研究から、より高活性な人工光遺伝学ツールの創成などへの応用研究への道が開けました。
特記事項
なお、本研究は、主に日本学術振興会 科学研究費助成事業新学術領域研究(研究領域提案型)「二元機能性青色光受容タンパク質の光応答機構」(代表者:山元淳平)、同基盤研究(C)「DNA光回復酵素フォトリアーゼのXFEL時分割結晶構造解析」(代表者:別所義隆)、JST創発的研究推進事業(FOREST)「DNA修復反応の動的構造解析基盤の創出」(代表者:山元淳平)、日本医療研究開発機構(AMED)の生命科学・創薬研究支援基盤事業(BINDS)(代表者:岩田想、分担者:南後恵理子)による助成を受けて行われました。
【用語解説】
※1. フラビンアデニンジヌクレオチド
ビタミンB2(リボフラビン)にピロリン酸を介してアデノシンが結合した化合物で、多くの酸化還元酵素の補酵素として使われている。アデノシンが結合しないフラビンモノヌクレオチド(FMN)とともに、フラビン補酵素と呼ばれる。酸化型、一電子還元型アニオン型ラジカル、一電子還元型中性ラジカル、二電子還元型の酸化還元状態をとり、それぞれFADox、FAD•–、FADH•、FADH–と示した。
※2. 光還元反応
クリプトクロムが属する光回復酵素・クリプトクロムスーパーファミリー(PCSf)に特徴的な光依存的なFADの還元反応。励起状態のFAD発色団は、PCSf中にて高度に保存された3つないし4つの芳香族アミノ酸側鎖から電子を獲得し、還元状態のFAD種が生成する。一方で、芳香族アミノ酸側鎖上に生じた正孔は、保存された他のアミノ酸側鎖から連続的に電子授受が起こることでタンパク質外縁近傍へと移動し、還元状態のFAD種が安定化される。
※3. X線自由電子レーザー(XFEL)
近年の加速器技術の発展によって実現したX線領域のパルスレーザー。従来の半導体や気体を発振媒体とするレーザーとは異なり、真空中を高速で移動する電子ビームを媒体とするため、原理的な波長の制限はない。「SPring-8(スプリングエイト)」などの従来の放射光源と比較して、10億倍も高い輝度のX線がフェムト秒(1,000兆分の1秒)スケールの時間幅を持つパルス光として出射される。この高い輝度を活かしてマイクロメートルサイズの小さな結晶を用いたタンパク質の原子分解能の構造解析やX線領域の非線形光学現象の解明などの用途に用いられている。
XFELはX-ray Free Electron Laserの略。
※4. SACLA
理化学研究所と高輝度光科学研究センターが共同で建設した日本ではじめてのXFEL施設。高い空間コヒーレンス、短いパルス幅、高いピーク輝度を備えたX線領域のレーザーを発生させる。2011年3月に施設が完成し、SPring-8 Angstrom Compact free electron LAserの頭の頭文字を取ってSACLAと命名された。2011年6月に最初のX線レーザーを発振、2012年3月から共用運転が開始され、利用実験が始まった。大きさが諸外国の同様の施設と比べて数分の1とコンパクトであるにもかかわらず、0.1 nm以下という世界最短クラスの波長のレーザー生成能力を持つ。
※5. 時分割シリアルフェムト秒X線結晶構造解析(TR-SFX)
結晶中の分子の微細な動きを高い時間・空間分解能で観察する手法。本研究では、高粘度媒体に懸濁させた微結晶をXFELおよび励起パルスレーザー光の焦点に対して連続的に吐出することで、光励起後一定の遅延時間における回折像を取得した。数万枚のイメージデータからタンパク質の立体構造を決定し、光応答反応中間体のスナップショットを構築した。
本件に関するお問い合わせ先 |
本件に関するお問い合わせ先
<研究に関するお問い合わせ>
大阪大学 大学院基礎工学研究科 准教授
山元淳平(やまもと じゅんぺい)
東北大学 多元物質科学研究所 教授
南後恵理子(なんご えりこ)
公益財団法人高輝度光科学研究センター 主幹研究員
大和田成起(おおわだ しげき)
<広報に関するお問い合わせ>
大阪大学 基礎工学研究科 庶務係
TEL: 06-6850-6131 FAX: 06-6850-6477
E-mail: ki-syomuoffice.osaka-u.ac.jp
東北大学 多元物質科学研究所 広報情報室
TEL: 022-217-5198
E-mail: press.tagengrp.tohoku.ac.jp
公益財団法人高輝度光科学研究センター
利用推進部 普及情報課
TEL: 0791-58-2785
E-mail: このメールアドレスはスパムボットから保護されています。閲覧するにはJavaScriptを有効にする必要があります。
(SPring-8 / SACLAに関すること)
公益財団法人高輝度光科学研究センター
利用推進部 普及情報課
TEL:0791-58-2785 FAX:0791-58-2786
E-mail:このメールアドレスはスパムボットから保護されています。閲覧するにはJavaScriptを有効にする必要があります。